LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced adhesion force based on microphase separation induced by complexation of ferric ions and polyurethane matrix

Photo from wikipedia

Waterborne polyurethane elastomer (WPU) has been widely used as a glue, but it still has some drawbacks, including a long cure time and weak adhesive force. In order to overcome… Click to show full abstract

Waterborne polyurethane elastomer (WPU) has been widely used as a glue, but it still has some drawbacks, including a long cure time and weak adhesive force. In order to overcome these drawbacks, a new composite [PU/ferric ion complexation (Fe/PU)] with high adhesive strength was successfully prepared using ferric ion (Fe3+) as a complexing agent. Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, and tensile testing were used to characterize the chemical structure and mechanical properties of the as-obtained composites. Introduction of the ferric ion induces a certain degree of microphase separation, resulting in better mechanical strength and interfacial adhesion. The mechanical properties of the PU composite with ferric ions are higher than that of pure PU. The adhesive strength of the 25%-Fe/PU composite is 32.46 ± 3.1 MPa, exhibiting superior adhesive strength. The tensile strength was enhanced 34%, and the elongation was enhanced 23.6% compared to pure PU. Furthermore, the Fe/PU composite, coordinated with ferric ions, exhibits an enhanced storage modulus and reduced loss coefficient compared to PU. We can foresee that Fe/PU composites will play an important role in the building and engineering areas. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46069.

Keywords: strength; complexation; force; microphase separation; ferric ions

Journal Title: Journal of Applied Polymer Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.