Long noncoding RNAs (lncRNAs) that have immune responses to various stimuli have been identified in some insects. One type of pathogen-associated molecular pattern, double-stranded RNA (dsRNA), can trigger the RNA… Click to show full abstract
Long noncoding RNAs (lncRNAs) that have immune responses to various stimuli have been identified in some insects. One type of pathogen-associated molecular pattern, double-stranded RNA (dsRNA), can trigger the RNA interference (RNAi) pathway and immune response. Interestingly, there has been no research into characterizing the relationship between lncRNA and dsRNA-induced RNAi pathways. In this study, dsRNA-induced lncRNAs were investigated in two species of lepidopteran insects, Helicoverpa armigera and Plutella xylostella, and one species of coleopteran insects, Tribolium castaneum. Between untreated group and dsRNA-induced group; 3,463 H. armigera, 6,245 P. xylostella, and 3,067 T. castaneum differentially expressed lncRNAs were identified while 156 H. armigera, 247 P. xylostella, 415 T. castaneum lncRNAs and their putative target genes showed consistent changes in gene expression. In T. castaneum, most target genes of the differentially expressed lncRNAs are enriched in the cyclic adenosine monophosphate signaling pathway, ABC transporters, and Janus kinase-signal transducers and activators of the transcription signaling pathway. Conversely, in H. armigera and P. xylostella, the differentially expressed lncRNAs were mainly enriched in the metabolic, digestive, and synthetic signaling pathways. This result indicates that dsRNA-induced lncRNA is species-dependent. We also found that both Dicer-2 and the lncRNA that targets Dicer-2 were significantly upregulated after dsRNA treatment in P. xylostella, indicating that some lncRNAs may be involved in the regulation of the core RNAi pathway in insects. Our results are the first to identify a relationship between lncRNAs and dsRNA in various insect species with different RNAi efficiencies. These results provide a reference for future study of the dsRNA-induced RNAi pathway and different RNAi efficiencies among insect species.
               
Click one of the above tabs to view related content.