LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dipteran endoparasitoid Exorista bombycis utilizes antihemocyte components against host defense of silkworm Bombyx mori.

Photo by matttttttma from unsplash

Dipteran endoparasitoids avoid host immune response; however, antidefense components from the Dipterans are unknown. Infestation of commercial silkworm Bombyx mori Linnaeus (Lepidoptera: Bombycidae) by endoparasitoid Exorista bombycis Louis (Diptera: Tachinidae) induced… Click to show full abstract

Dipteran endoparasitoids avoid host immune response; however, antidefense components from the Dipterans are unknown. Infestation of commercial silkworm Bombyx mori Linnaeus (Lepidoptera: Bombycidae) by endoparasitoid Exorista bombycis Louis (Diptera: Tachinidae) induced immune reactions, cytotoxicity, granulation, degranulation, and augmented release of cytotoxic marker enzyme lactate dehydrogenase (LDH), and degranulation-mediator enzyme β-hexosaminidase in hemocytes. In this study, by reverse phase high-performance liquid chromatography, fractions of E. bombycis larval tissue protein with antihemocytic activity are separated. From the fraction, peptides of hemocyte aggregation inhibitor protein (HAIP) and pyridoxamine phosphate oxidase (PNPO) are identified by mass spectrometry. Interacting partners of HAIP and PNPO are retrieved that further enhance the virulence of the parasitoid. PNPO and HAIP genes showed a four- to seven fold increase in expression in the integument of the parasitoid larva. Together, the dipteran endoparasitoid E. bombycis exploit antihemocyte activity to inhibit host defense reactions in addition to defense evasion contemplated.

Keywords: endoparasitoid exorista; bombyx mori; defense; host; silkworm bombyx; bombycis

Journal Title: Archives of insect biochemistry and physiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.