LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploring isoxazoles and pyrrolidinones decorated with the 4,6‐dimethoxy‐1,3,5‐triazine unit as human farnesyltransferase inhibitors

Photo by kalenemsley from unsplash

Unprecedented triazinyl‐isoxazoles were afforded via an effective cycloaddition reaction between nitrile oxides and the scarcely described 2‐ethynyl‐4,6‐dimethoxy‐1,3,5‐triazine as dipolarophile. The biological evaluation of the newly synthesized compounds showed that the… Click to show full abstract

Unprecedented triazinyl‐isoxazoles were afforded via an effective cycloaddition reaction between nitrile oxides and the scarcely described 2‐ethynyl‐4,6‐dimethoxy‐1,3,5‐triazine as dipolarophile. The biological evaluation of the newly synthesized compounds showed that the inhibition of human farnesyltransferase by zinc complexation could be improved with triazine‐isoxazole moieties. The replacement of the isoxazole unit by a pyrrolidin‐2‐one was detrimental to the inhibitory activity while the pyrrolidin‐2‐thione derivatives conserved the biological potential. The potential of selected compounds to disrupt protein farnesylation in Chinese hamster ovary (CHO) cells transfected with pEGFP‐CAAX was also evaluated.

Keywords: unit; exploring isoxazoles; dimethoxy triazine; human farnesyltransferase

Journal Title: Archiv der Pharmazie
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.