LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and anti‐coronavirus activity of a series of 1‐thia‐4‐azaspiro[4.5]decan‐3‐one derivatives

Photo by sushioutlaw from unsplash

A series of 1‐thia‐4‐azaspiro[4.5]decan‐3‐ones bearing an amide group at C‐4 and various substitutions at C‐2 and C‐8 were synthesized and evaluated against human coronavirus and influenza virus. Compounds 7m, 7n,… Click to show full abstract

A series of 1‐thia‐4‐azaspiro[4.5]decan‐3‐ones bearing an amide group at C‐4 and various substitutions at C‐2 and C‐8 were synthesized and evaluated against human coronavirus and influenza virus. Compounds 7m, 7n, 8k, 8l, 8m, 8n, and 8p were found to inhibit human coronavirus 229E replication. The most active compound was N‐(2‐methyl‐8‐tert‐butyl‐3‐oxo‐1‐thia‐4‐azaspiro[4.5]decan‐4‐yl)‐3‐phenylpropanamide (8n), with an EC50 value of 5.5 µM, comparable to the known coronavirus inhibitor, (Z)‐N‐[3‐[4‐(4‐bromophenyl)‐4‐hydroxypiperidin‐1‐yl]‐3‐oxo‐1‐phenylprop‐1‐en‐2‐yl]benzamide (K22). Compound 8n and structural analogs were devoid of anti‐influenza virus activity, although their scaffold is shared with a previously discovered class of H3 hemagglutinin‐specific influenza virus fusion inhibitors. These findings point to the 1‐thia‐4‐azaspiro[4.5]decan‐3‐one scaffold as a versatile chemical structure with high relevance for antiviral drug development.

Keywords: thia azaspiro; azaspiro decan; coronavirus; series thia; decan one

Journal Title: Archiv Der Pharmazie
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.