LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3‐[3‐(Phenalkylamino)cyclohexyl]phenols: Synthesis, biological activity, and in silico investigation of a naltrexone‐derived novel class of MOR‐antagonists

Photo by chrisluengas from unsplash

The development of novel μ‐opioid receptor (MOR) antagonists is one of the main objectives of drug discovery and development. Based on a simplified version of the morphinan scaffold, 3‐[3‐(phenalkylamino)cyclohexyl]phenol analogs… Click to show full abstract

The development of novel μ‐opioid receptor (MOR) antagonists is one of the main objectives of drug discovery and development. Based on a simplified version of the morphinan scaffold, 3‐[3‐(phenalkylamino)cyclohexyl]phenol analogs were designed, synthesized, and evaluated for their MOR antagonist activity in vitro and in silico. At the highest concentrations, the compounds decreased by 52% to 75% DAMGO‐induced GTPγS stimulation, suggesting that they acted as antagonists. Moreover, Extra‐Precision Glide and Generalized‐Born Surface Area experiments provided useful information on the nature of the ligand–receptor interactions, indicating a peculiar combination of C‐1 stereochemistry and N‐substitutions as feasibly essential for MOR–ligand complex stability. Interestingly, compound 9 showed the best experimental binding affinity, the highest antagonist activity, and the finest MOR–ligand complex stability. In silico experiments also revealed that the most promising stereoisomer (1R, 3R, 5S) 9 retained 1,3‐cis configuration with phenol ring equatorial oriented. Further studies are needed to better characterize the pharmacodynamics and pharmacokinetic properties of these compounds.

Keywords: mor antagonists; phenalkylamino cyclohexyl; silico; mor; activity

Journal Title: Archiv der Pharmazie
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.