This paper considers the problem of fault detection and reconstruction of actuator faults for linear parameter varying descriptor systems. A polytopic sliding mode observer (PSMO) is constructed to achieve simultaneous… Click to show full abstract
This paper considers the problem of fault detection and reconstruction of actuator faults for linear parameter varying descriptor systems. A polytopic sliding mode observer (PSMO) is constructed to achieve simultaneous reconstruction of LPV polytopic descriptor system states and actuator faults. Sufficient conditions for the existence and design algorithm of the proposed polytopic sliding mode observer are provided. In addition, the design of the PSMO is formulated in terms of linear matrix inequalities that can be suitably solved using convex optimization techniques. This PSMO can force the output estimation error to converge to zero in a finite time when the actuators faults are bounded through the reinjection of the output estimation error via a nonlinear switching term. The effectiveness of the design technique is illustrated through a simulation of an anaerobic bioreactor.
               
Click one of the above tabs to view related content.