An optical fiber link to a telescope provides many advantages for spectrometers designed to detect and characterize extrasolar planets through precise radial velocity (PRV) measurements. In the seeing-limited regime, a… Click to show full abstract
An optical fiber link to a telescope provides many advantages for spectrometers designed to detect and characterize extrasolar planets through precise radial velocity (PRV) measurements. In the seeing-limited regime, a multi-mode fiber is typically used so that a significant amount of starlight may be captured. In the near-diffraction-limited case, either with an adaptive optics system or with a small telescope at an excellent site, efficiently coupling starlight into a much smaller, single-mode fiber may be possible. In general, a spectrometer designed for single-mode fiber input will be substantially less costly than one designed for multi-mode fiber input. We describe the results of tests coupling starlight from a 70 cm telescope at Mt. Hopkins, Arizona into the single-mode fiber of the MINERVA-Red spectrometer at a wavelength of ~850 nm using a low-speed tip/tilt image stabilization system comprising all commercial, off-the-shelf components. We find that approximately 0.5% of the available starlight is coupled into the single-mode fiber under seeing conditions typical for observatories hosting small telescopes, which is close to the theoretical expectation. We discuss scientific opportunities for small telescopes paired with inexpensive, high-resolution spectrometers, as well as upgrade paths that should significantly increase the coupling efficiency for the MINERVA-Red system.
               
Click one of the above tabs to view related content.