LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anti-ovarian cancer potential, in silico studies, and anti-Alzheimer's disease effects of some natural compounds as cholinesterase inhibitors.

Photo from wikipedia

Ovarian cancer ranks seventh in the most common malignant tumors in females and seriously threatens women's reproductive health. Natural sources may lead to basic research on potential bioactive components as… Click to show full abstract

Ovarian cancer ranks seventh in the most common malignant tumors in females and seriously threatens women's reproductive health. Natural sources may lead to basic research on potential bioactive components as lead compounds in drug discovery and, ultimately, therapeutic treatments for ovarian cancer and other diseases. Alzheimer's disease (AD) and ovarian cancer are complex diseases of aging that impose an enormous public health burden worldwide. Additionally, people with AD have low levels of acetylcholine in their brains. Enzymes called cholinesterases break down acetylcholine in the brain. If their action is inhibited, more acetylcholine is available for communication among brain cells. In this study, pregnanolone, diethylstilbestrol (DES), flavokawain C, and methyl 3,4,5-trihydroxybenzoate molecules obtained excellent-to-good inhibitory against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes with IC50 values ranging between 77.18 ± 8.62 to 461.35 ± 28.54 μM for AChE and 23.86 ± 4.07 to 306.62 ± 32.46 μM for BuChE. The calculations revealed the probable interactions and their characteristics at an atomic level. Indeed, the docking scores of DES, flavokawain C, pregnanolone, and methyl 3,4,5-trihydroxybenzoate for AChE are -6.685, -6.247, -6.672, and -5.183 (kcal/mol), respectively. This value for the compounds against BuChE is -6.042, -8.851, -5.655, and -5.898 (kcal/mol), respectively. Additionally, these compounds significantly decreased ovarian cancer cell viability. Additionally, 100 μM dose of all molecules caused good reductions in ovarian cancer cell viability.

Keywords: alzheimer disease; ovarian cancer; anti ovarian; cancer potential; cancer

Journal Title: Biotechnology and applied biochemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.