LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Apoptosis, Expression of PAX3 and P53, and Caspase Signal in Fetuses with Neural Tube Defects.

Photo from wikipedia

BACKGROUND Neural tube defects (NTDs) are among the most common and severe congenital malformations of the central nervous system. Animal studies have shown that apoptosis is involved in the development… Click to show full abstract

BACKGROUND Neural tube defects (NTDs) are among the most common and severe congenital malformations of the central nervous system. Animal studies have shown that apoptosis is involved in the development of NTDs. However, little evidence is available from human studies. We aim to examine the level of apoptosis and expression of apoptosis-regulating proteins of human terminated fetuses. METHODS A total of 37 NTD cases and 21 controls from pregnancy terminations were recruited. Tissues of the central nervous system were obtained through autopsy. Apoptosis of neuroepithelial cells was examined by terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labeling (TUNEL) assay. Expression of PAX3, p53, and caspase 3/8/9 in central nervous tissue was measured using Western blotting. RESULTS More TUNEL-positive apoptosis cells were observed in the central nervous tissue of NTD cases than those of controls (p < 0.05). In spinal cord tissue, lower PAX3 expression, higher p53 expression, and increased levels of cleaved caspase 3(17kD) and cleaved caspase 8 (18kD) were found in anencephaly cases but not in spina bifida cases when compared with controls. In brain tissue, levels of PAX3 were significantly reduced in both encephalocele and spina bifida subtypes; the expression levels of cleaved caspase 3(17 kD) of encephalocele cases and cleaved caspase 8(47/45 kD) in spina bifida cases were higher than in controls; no difference was found in the expression of p53 or caspase 9 between NTDs and controls. CONCLUSION These findings provide some evidence that excessive apoptosis in fetal central nervous tissues may be associated with the development of human NTDs. Birth Defects Research 109:1596-1604, 2017. © 2017 Wiley Periodicals, Inc.

Keywords: apoptosis; pax3; central nervous; expression; p53 caspase; p53

Journal Title: Birth defects research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.