LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical evaluation of human exposure to WiMax patch antenna in tablet or laptop.

Photo from academic.microsoft.com

The use of wireless communication devices, such as tablets or laptops, is increasing among children. Only a few studies assess specific energy absorption rate (SAR) due to exposure from wireless-enabled… Click to show full abstract

The use of wireless communication devices, such as tablets or laptops, is increasing among children. Only a few studies assess specific energy absorption rate (SAR) due to exposure from wireless-enabled tablets and laptops, in particular with Worldwide Interoperability for Microwave Access (WiMax) technology. This paper reports the estimation of the interaction between an E-shaped patch antenna (3.5 GHz) and human models, by means of finite-difference time-domain (FDTD) method. Specifically, four different human models (young adult male, young adult female, pre-teenager female, male child) in different exposure conditions (antenna at different distances from the human model, in different positions, and orientations) were considered and whole-body, 10 and 1 g local SAR and magnetic field value (Bmax) were evaluated. From our results, in some worst-case scenarios involving male and female children's exposure, the maximum radiofrequency energy absorption (hot spots) is located in more sensitive organs such as eye, genitals, and breast. Bioelectromagnetics. 39:414-422, 2018. © 2018 Wiley Periodicals, Inc.

Keywords: numerical evaluation; wimax; exposure; patch antenna

Journal Title: Bioelectromagnetics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.