LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intermittent pulsed electromagnetic field stimulation activates the mTOR pathway and stimulates the proliferation of osteoblast-like cells.

Photo from wikipedia

Pulsed electromagnetic fields (PEMFs) have been shown to be a noninvasive physical stimulant for bone fracture healing. However, PEMF stimulation requires a relatively long period of time and its mechanism… Click to show full abstract

Pulsed electromagnetic fields (PEMFs) have been shown to be a noninvasive physical stimulant for bone fracture healing. However, PEMF stimulation requires a relatively long period of time and its mechanism of action has not yet been fully clarified. Recently, the mammalian target of rapamycin (mTOR) pathway has been shown to be involved in bone formation. This study aimed to investigate the effects of PEMFs on osteoblastic MC3T3-E1 cells by examining various cellular responses including changes in the mTOR pathway. Continuous PEMF stimulation induced a transient phosphorylation of the mTOR pathway, whereas intermittent PEMF stimulation (1 cycle of 10 min stimulation followed by 20 min of stimulation pause) revitalized the reduced phosphorylation. Moreover, PEMF stimulation stimulated cell proliferation (bromodeoxyuridine incorporation) rather than differentiation (alkaline phosphatase activity), with a more notable effect in the intermittently stimulated cells. These results suggest that intermittent PEMF stimulation may be effective in promoting bone fracture healing by accelerating cell proliferation, and in shortening stimulation time. Bioelectromagnetics © 2019 Bioelectromagnetics Society.

Keywords: mtor pathway; stimulation; proliferation; pemf stimulation; pulsed electromagnetic

Journal Title: Bioelectromagnetics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.