Electromagnetic energy is the "backbone" of wireless communication systems, and its progressive use is considered to have a low but measurable impact on a wide range of biological systems. Even… Click to show full abstract
Electromagnetic energy is the "backbone" of wireless communication systems, and its progressive use is considered to have a low but measurable impact on a wide range of biological systems. Even though a growing amount of data has reported electromagnetic energy absorption in humans along with subsequent biological effects, the consequences of electromagnetic energy absorption on plants have been insufficiently addressed. The higher surface to volume ratio along with the enormous water-ion concentrations makes the plant an ideal model to interact with non-ionizing electromagnetic radiation. In this study, controlled and periodic electromagnetic exposure of 1837.50 MHz, 2.75 W/m2 for 6 h a day on a popular rice variety (var. Satabdi) reduced the seed germination rate. The same dose of periodic electromagnetic exposure upregulated phytochrome B and phytochrome C gene transcripts in 12-day-old seedlings, whereas, in 32-day-old plants, the dose upregulated calmodulin and phytochrome C while the bZIP1 gene showed repression. However, the transcript abundance of bZIP1, phytochrome B, and phytochrome C genes was enhanced even in 12-day-old Satabdi seedlings following instantaneous short-duration (2 h 30 min) controlled electromagnetic exposure to 1837.50 MHz, 2.75 W/m2 . The reported responses in rice were observed below the international electromagnetic regulatory limits. Thus, rice plants perceived electromagnetic energy emitted by the wireless communication system as abiotic stress as per its response by upregulation or repression of known stress-sensing genes. Bioelectromagnetics. © 2020 Bioelectromagnetics Society.
               
Click one of the above tabs to view related content.