LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bayes and Darwin: How replicator populations implement Bayesian computations

Photo from wikipedia

Bayesian learning theory and evolutionary theory both formalize adaptive competition dynamics in possibly high‐dimensional, varying, and noisy environments. What do they have in common and how do they differ? In… Click to show full abstract

Bayesian learning theory and evolutionary theory both formalize adaptive competition dynamics in possibly high‐dimensional, varying, and noisy environments. What do they have in common and how do they differ? In this paper, we discuss structural and dynamical analogies and their limits, both at a computational and an algorithmic‐mechanical level. We point out mathematical equivalences between their basic dynamical equations, generalizing the isomorphism between Bayesian update and replicator dynamics. We discuss how these mechanisms provide analogous answers to the challenge of adapting to stochastically changing environments at multiple timescales. We elucidate an algorithmic equivalence between a sampling approximation, particle filters, and the Wright‐Fisher model of population genetics. These equivalences suggest that the frequency distribution of types in replicator populations optimally encodes regularities of a stochastic environment to predict future environments, without invoking the known mechanisms of multilevel selection and evolvability. A unified view of the theories of learning and evolution comes in sight.

Keywords: populations implement; replicator populations; darwin replicator; bayes darwin; replicator; implement bayesian

Journal Title: BioEssays
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.