LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Trans‐synaptic mechanisms orchestrated by mammalian synaptic cell adhesion molecules

Photo from wikipedia

Bidirectional trans‐synaptic signaling is essential for the formation, maturation, and plasticity of synaptic connections. Synaptic cell adhesion molecules (CAMs) are prime drivers in shaping the identities of trans‐synaptic signaling pathways.… Click to show full abstract

Bidirectional trans‐synaptic signaling is essential for the formation, maturation, and plasticity of synaptic connections. Synaptic cell adhesion molecules (CAMs) are prime drivers in shaping the identities of trans‐synaptic signaling pathways. A series of recent studies provide evidence that diverse presynaptic cell adhesion proteins dictate the regulation of specific synaptic properties in postsynaptic neurons. Focusing on mammalian synaptic CAMs, this article outlines several exemplary cases supporting this notion and highlights how these trans‐synaptic signaling pathways collectively contribute to the specificity and diversity of neural circuit architecture.

Keywords: cell adhesion; adhesion molecules; trans synaptic; synaptic cell

Journal Title: BioEssays
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.