LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ancient endosymbiont‐mediated transmission of a selfish gene provides a model for overcoming barriers to gene transfer into animal mitochondrial genomes

Photo from wikipedia

In contrast to bilaterian animals, non‐bilaterian mitochondrial genomes contain atypical genes, often attributed to horizontal gene transfer (HGT) as an ad hoc explanation. Although prevalent in plants, HGT into animal… Click to show full abstract

In contrast to bilaterian animals, non‐bilaterian mitochondrial genomes contain atypical genes, often attributed to horizontal gene transfer (HGT) as an ad hoc explanation. Although prevalent in plants, HGT into animal mitochondrial genomes is rare, lacking suitable explanatory models for their occurrence. HGT of the mismatch DNA repair gene (mtMutS) from giant viruses to octocoral (soft corals and their kin) mitochondrial genomes provides a model for how barriers to HGT to animal mitochondria may be overcome. A review of the available literature suggests that this HGT was mediated by an alveolate endosymbiont infected with a lysogenic phycodnavirus that enabled insertion of the homing endonuclease containing mtMutS into octocoral mitochondrial genomes. We posit that homing endonuclease domains and similar selfish elements play a crucial role in such inter‐domain gene transfers. Understanding the role of selfish genetic elements in HGT has the potential to aid development of tools for manipulating animal mitochondrial DNA.

Keywords: provides model; ancient endosymbiont; mitochondrial genomes; gene transfer; animal mitochondrial; gene

Journal Title: BioEssays
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.