LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polyester hydrolysis is enhanced by a truncated esterase: Less is more.

Photo by slaapwijsheid from unsplash

An esterase from Clostridium botulinum (Cbotu_EstA) previously reported to hydrolyze the biodegradable polyester poly(butylene adipate-co-terephthalate) was redesigned to improve the hydrolysis of synthetic polyesters. Increased activity was indeed observed for… Click to show full abstract

An esterase from Clostridium botulinum (Cbotu_EstA) previously reported to hydrolyze the biodegradable polyester poly(butylene adipate-co-terephthalate) was redesigned to improve the hydrolysis of synthetic polyesters. Increased activity was indeed observed for del71Cbotu_EstA variant, which performed activity on the widespread polyester polyethylene terephthalate, which was not able to be attacked by the wild-type enzyme Cbotu_EstA. Analysis of the 3D structure of the enzyme showed that removing 71 residues at the N-terminus of the enzyme exposed a hydrophobic patch on the surface and improved sorption of hydrophobic polyesters concomitantly facilitating the access of the polymer to the active site. These results show a new route for enhancing enzyme activity for hydrolysis and modification of polyesters.

Keywords: truncated esterase; polyester hydrolysis; hydrolysis; esterase; hydrolysis enhanced; enhanced truncated

Journal Title: Biotechnology journal
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.