LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Increasing Cell Seeding Density Improves Elastin Expression and Mechanical Properties in Collagen Gel-Based Scaffolds Cellularized with Smooth Muscle Cells.

Photo from wikipedia

Vascular tissue engineering combines cells with scaffold materials in vitro aiming the development of physiologically relevant vascular models. For natural scaffolds such as collagen gels, where cells can be mixed… Click to show full abstract

Vascular tissue engineering combines cells with scaffold materials in vitro aiming the development of physiologically relevant vascular models. For natural scaffolds such as collagen gels, where cells can be mixed with the material solution before gelation, cell seeding density is a key parameter that can affect extracellular matrix deposition and remodeling. Nonetheless, this parameter is often overlooked and densities sensitively lower than those of native tissues, are usually employed. Herein, the effect of seeding density on the maturation of tubular collagen gel-based scaffolds cellularized with smooth muscle cells is investigated. The compaction, the expression, and deposition of key vascular proteins and the resulting mechanical properties of the constructs are evaluated up to 1 week of maturation. Results show that increasing cell seeding density accelerates cell-mediated gel compaction, enhances elastin expression (more than sevenfold increase at the highest density, Day 7) and finally improves the overall mechanical properties of constructs. Of note, the tensile equilibrium elastic modulus, evaluated by stress-relaxation tests, reach values comparable to native arteries for the highest cell density, after a 7-day maturation. Altogether, these results show that higher cell seeding densities promote the rapid maturation of collagen gel-based vascular constructs toward structural and mechanical properties better mimicking native arteries.

Keywords: collagen gel; seeding density; density; cell seeding; mechanical properties; cell

Journal Title: Biotechnology journal
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.