LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Linking two worlds in polymer chemistry: The influence of block uniformity and dispersity in amphiphilic block copolypeptoids on their self-assembly.

Photo from wikipedia

The self-assembly of block copolymers has captured the interest of scientists for many decades because it can induce ordered structures and help to imitate complex structures found in nature. In… Click to show full abstract

The self-assembly of block copolymers has captured the interest of scientists for many decades because it can induce ordered structures and help to imitate complex structures found in nature. In contrast to proteins, nature's most functional hierarchical structures, conventional polymers are disperse in their length distribution. Here, we synthesized hydrophilic and hydrophobic polypeptoids via solid-phase synthesis (uniform) and ring-opening polymerization (disperse). Differential scanning calorimetry measurements showed that the uniform hydrophobic peptoids converge to a maximum of the melting temperature at a much lower chain length than their disperse analogs, showing that not only the chain length but also the dispersity has a considerable impact on the thermal properties of those homopolymers. These homopolymers were then coupled to yield amphiphilic block copolypeptoids. SAXS and AFM measurements confirm that the dispersity plays a major role in microphase separation of these macromolecules, and it appears that uniform hydrophobic blocks form more ordered structures.

Keywords: self assembly; block; dispersity; chemistry; amphiphilic block; block copolypeptoids

Journal Title: Biopolymers
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.