LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Engineering cellulolytic bacterium Clostridium thermocellum to co‐ferment cellulose‐ and hemicellulose‐derived sugars simultaneously

Photo by cdc from unsplash

Cellulose and hemicellulose are the most abundant components in plant biomass. A preferred Consolidated Bioprocessing (CBP) system is one which can directly convert both cellulose and hemicellulose into target products… Click to show full abstract

Cellulose and hemicellulose are the most abundant components in plant biomass. A preferred Consolidated Bioprocessing (CBP) system is one which can directly convert both cellulose and hemicellulose into target products without adding the costly hydrolytic enzyme cocktail. In this work, the thermophilic, cellulolytic, and anaerobic bacterium, Clostridium thermocellum DSM 1313, was engineered to grow on xylose in addition to cellulose. Both xylA (encoding for xylose isomerase) and xylB (encoding for xylulokinase) genes from the thermophilic anaerobic bacterium Thermoanaerobacter ethanolicus were introduced to enable xylose utilization while still retaining its inherent ability to grow on 6‐carbon substrates. Targeted integration of xylAB into C. thermocellum genome realized simultaneous fermentation of xylose with glucose, with cellobiose (glucose dimer), and with cellulose, respectively, without carbon catabolite repression. We also showed that the respective H2 and ethanol production were twice as much when both xylose and cellulose were consumed simultaneously than when consuming cellulose alone. Moreover, the engineered xylose consumer can also utilize xylo‐oligomers (with degree of polymerization of 2–7) in the presence of xylose. Isotopic tracer studies also revealed that the engineered xylose catabolism contributed to the production of ethanol from xylan which is a model hemicellulose in mixed sugar fermentation, demonstrating immense potential of this enhanced CBP strain in co‐utilizing both cellulose and hemicellulose for the production of fuels and chemicals.

Keywords: clostridium thermocellum; bacterium clostridium; cellulose; cellulose hemicellulose

Journal Title: Biotechnology and Bioengineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.