LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pre-incubation conditions determine the fermentation pattern and microbial community structure in fermenters at mild hydrostatic pressure.

Photo from wikipedia

Fermentation at elevated hydrostatic pressure is a novel strategy targeting product selectivity. However, the role of inoculum history and cross-resistance, i.e., acquired tolerance from incubation under distinctive environmental stress, remains… Click to show full abstract

Fermentation at elevated hydrostatic pressure is a novel strategy targeting product selectivity. However, the role of inoculum history and cross-resistance, i.e., acquired tolerance from incubation under distinctive environmental stress, remains unclear in high-pressure operation. In our here presented work, we studied fermentation and microbial community responses of halotolerant marine sediment inoculum (MSI) and anaerobic digester inoculum (ADI), pre-incubated in serum bottles at different temperatures and subsequently exposed to mild hydrostatic pressure (MHP <10 MPa) in stainless steel reactors. Results showed that MHP effects on microbial growth, activity and community structure were strongly temperature-dependent. At moderate temperature (20°C), biomass yield and fermentation were not limited by MHP; suggesting a cross-resistance effect from incubation temperature and halotolerance. Low temperatures (10°C) and MHP imposed kinetic and bioenergetic limitations, constraining growth and product formation. Fermentation remained favorable in MSI at 28°C and ADI at 37°C, despite reduced biomass yield resulting from maintenance and decay proportionally increasing with temperature. Microbial community structure was modified by temperature during the enrichment, and slight differences observed after MHP-exposure did not compromise functionality. Results showed that the relation incubation temperature - halotolerance proved to be a modifier of microbial responses to MHP and could be potentially exploited in fermentations to modulate product/biomass ratio. This article is protected by copyright. All rights reserved.

Keywords: hydrostatic pressure; fermentation; pressure; microbial community; incubation

Journal Title: Biotechnology and bioengineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.