In this study, we present the first integrated and continuous downstream process for the production of microbial virus‐like particle vaccines. Modular murine polyomavirus major capsid VP1 with integrated J8 antigen… Click to show full abstract
In this study, we present the first integrated and continuous downstream process for the production of microbial virus‐like particle vaccines. Modular murine polyomavirus major capsid VP1 with integrated J8 antigen was used as a model virus‐like particle vaccine. The integrated continuous downstream process starts with crude cell lysate and consists of a flow‐through chromatography step followed by periodic counter‐current chromatography (PCC) (bind‐elute) using salt‐tolerant mixed‐mode resin and subsequent in‐line assembly. The automated process showed a robust behavior over different inlet feed concentrations ranging from 1.0 to 3.2 mg ml−1 with only minimal adjustments needed, and produced continuously high‐quality virus‐like particles, free of nucleic acids, with constant purity over extended periods of time. The average size remained constant between 44.8 ± 2.3 and 47.2 ± 2.9 nm comparable to literature. The process had an overall product recovery of 88.6% and a process productivity up to 2.56 mg h−1 mlresin−1 in the PCC step, depending on the inlet concentration. Integrating a flow through step with a subsequent PCC step allowed streamlined processing, showing a possible continuous pathway for a wide range of products of interest.
               
Click one of the above tabs to view related content.