LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing long‐term storage and stability of engineered living materials through desiccant storage and trehalose treatment

Photo from wikipedia

Engineered living materials (ELMs) have broad applications for enabling on‐demand bioproduction of compounds ranging from small molecules to large proteins. However, most formulations and reports lack the capacity for storage… Click to show full abstract

Engineered living materials (ELMs) have broad applications for enabling on‐demand bioproduction of compounds ranging from small molecules to large proteins. However, most formulations and reports lack the capacity for storage beyond a few months. In this study, we develop an optimized procedure to maximize stress resilience of yeast‐laden ELMs through the use of desiccant storage and 10% trehalose incubation before lyophilization. This approach led to over 1‐year room temperature storage stability across a range of strain genotypes. In particular, we highlight the superiority of exogenously added trehalose over endogenous, engineered production in yielding robust preservation resilience that is independent of cell state. This simple, effective protocol enables sufficient accumulation of intracellular trehalose over a short period of contact time across a range of strain backgrounds without requiring the overexpression of a trehalose importer. A variety of microscopic analysis including µ‐CT and confocal microscopy indicate that cells form spherical colonies within F127‐BUM ELMs that have variable viability upon storage. The robustness of the overall procedure developed here highlights the potential for widespread deployment to enable on‐demand, cold‐chain independent bioproduction.

Keywords: engineered living; storage stability; desiccant storage; storage trehalose; storage; living materials

Journal Title: Biotechnology and Bioengineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.