LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quorum sensing-based metabolic engineering of the precursor supply in Streptomyces coelicolor to improve heterologous production of neoaureothin.

Photo from wikipedia

Streptomyces are important industrial bacteria that produce pharmaceutically valuable polyketides. However, mass production on an industrial scale is limited by low productivity, which can be overcome through metabolic engineering and… Click to show full abstract

Streptomyces are important industrial bacteria that produce pharmaceutically valuable polyketides. However, mass production on an industrial scale is limited by low productivity, which can be overcome through metabolic engineering and the synthetic biology of the host strain. Recently, the introduction of an auto-inducible expression system depending on microbial physiological state has been suggested as an important tool for the industrial-scale production of polyketides. In this study, titer improvement by enhancing the pool of CoA-derived precursors required for polyketide production was driven in a quorum sensing (QS)-dependent manner. A self-sustaining and inducer-independent regulatory system, named the QS-based metabolic engineering of precursor pool (QMP) system, was constructed, wherein the expression of genes involved in precursor biosynthesis was regulated by the QS-responsive promoter, scbAp. The QMP system was applied for neoaureothin production in a heterologous host, Streptomyces coelicolor M1152, and productivity increased by up to 4-fold. In particular, the engineered hyperproducers produced high levels of neoaureothin without adversely affecting cell growth. Overall, this study showed that self-regulated metabolic engineering mediated by QS has the potential to engineer strains for polyketide titer improvement.

Keywords: metabolic engineering; production; quorum sensing; engineering precursor; based metabolic

Journal Title: Biotechnology and bioengineering
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.