This article reports the results obtained from comparison of internal spin filter (ISF) and alternating flow filtration (ATF) as cell retention systems, regarding cell growth, volumetric perfusion rate, cell specific… Click to show full abstract
This article reports the results obtained from comparison of internal spin filter (ISF) and alternating flow filtration (ATF) as cell retention systems, regarding cell growth, volumetric perfusion rate, cell specific perfusion rate and cell productivity in the fermentation process. As expected we were able to reach higher cell densities and to achieve longer runs since ATF systems are known to be less affected by fouling. Volumetric production of the reactor using the ATF system was 50‐70% higher than the production achieved using the ISF due to higher cell density and a two‐fold increase in the perfusion rate. On the other hand, downstream processing performances were evaluated regarding chromatographic steps yields and productivity and quality attributes of the purified materials. Similar results were obtained for all evaluated systems. The fact that we were able to achieve a 2 working volumes (WV)/day perfusion rate using an ATF system as cell retention device allowed us to virtually double the WV of a 25 L reactor. These results constitute valuable data for the optimization of recombinant protein production in perfusion processes since a two‐fold increase in the average production of a manufacturing facility could be easily achieved as long as downstream scale up is possible. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1010–1014, 2017
               
Click one of the above tabs to view related content.