LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combining chemical flocculation and bacterial co‐culture of Cupriavidus taiwanensis and Ureibacillus thermosphaericus to detoxify a hardwood hemicelluloses hydrolysate and enable acetone–butanol–ethanol fermentation leading to butanol

Photo from wikipedia

Butanol, a fuel with better characteristics than ethanol, can be produced via acetone–butanol–ethanol (ABE) fermentation using lignocellulosic biomass as a carbon source. However, many inhibitors present in the hydrolysate limit… Click to show full abstract

Butanol, a fuel with better characteristics than ethanol, can be produced via acetone–butanol–ethanol (ABE) fermentation using lignocellulosic biomass as a carbon source. However, many inhibitors present in the hydrolysate limit the yield of the fermentation process. In this work, a detoxification technology combining flocculation and biodetoxification within a bacterial co‐culture composed of Ureibacillus thermosphaericus and Cupriavidus taiwanensis is presented for the first time. Co‐culture‐based strategies to detoxify filtered and unfiltered hydrolysates have been investigated. The best results of detoxification were obtained for a two‐step approach combining flocculation to biodetoxification. This sequential process led to a final phenolic compounds concentration of 1.4 g/L, a value close to the minimum inhibitory level observed for flocculated hydrolysate (1.1 g/L). The generated hydrolysate was then fermented with Clostridium acetobutylicum ATCC 824 for 120 h. A final butanol production of 8 g/L was obtained, although the detoxified hydrolysate was diluted to reach 0.3 g/L of phenolics to ensure noninhibitory conditions. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2753, 2019.

Keywords: butanol; fermentation; butanol ethanol; acetone butanol; culture; flocculation

Journal Title: Biotechnology Progress
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.