A major challenge in chromatography purification of therapeutic proteins is batch‐to‐batch variability with respect to impurity levels and product concentration in the feed. Mechanistic model can enable process analytical technology… Click to show full abstract
A major challenge in chromatography purification of therapeutic proteins is batch‐to‐batch variability with respect to impurity levels and product concentration in the feed. Mechanistic model can enable process analytical technology (PAT) implementation by predicting impact of such variations and thereby improving the robustness of the resulting process and controls. This article presents one such application of mechanistic model of hydrophobic interaction chromatography (HIC) as a PAT tool for making robust pooling decisions to enable clearance of aggregates for a monoclonal antibody (mAb) therapeutic. Model predictions were performed before the actual chromatography experiments to facilitate feedforward control. The approach has been successfully demonstrated for four different feeds with varying aggregate levels (3.84%–5.54%) and feed concentration (0.6 mg/mL–1 mg/mL). The resulting pool consistently yielded a product with 1.32 ± 0.03% aggregate vs. a target of 1.5%. A comparison of the traditional approach involving column fractionation with the proposed approach indicates that the proposed approach results in achievement of satisfactory product purity (98.68 ± 0.03% for mechanistic model based PAT controlled pooling vs. 98.64 ± 0.16% for offline column fractionation based pooling). © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2758, 2019.
               
Click one of the above tabs to view related content.