LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antennapedia-derived positively-charged peptide faces multiple problems upon their usage as targeting ligand for liposomal doxorubicin.

Photo by mbaumi from unsplash

The positively-charged peptide antp derived from Antennapedia transcription protein is demonstrated to mediate the liposome translocation across the cell membrane. In the current investigation, we prepared a stable liposomal doxorubicin… Click to show full abstract

The positively-charged peptide antp derived from Antennapedia transcription protein is demonstrated to mediate the liposome translocation across the cell membrane. In the current investigation, we prepared a stable liposomal doxorubicin (Dox) formulation and targeted it with the antp peptide from 0 to 200 ligand/liposome. These antp-containing liposomes were investigated in terms of physical stability on storage in the refrigerator and upon incubation in blood. Also, other features like cell binding, uptake, biodistribution, and treatment efficiency were evaluated in C26 colon carcinoma BALB/c mice. The Antp in liposomes resulted in enhanced particle growth with the development of the enormously large liposomes from 2000 nm to 6000 nm. Upon incubation in blood, these large liposomes were removed. The antp also enhanced the cell binding affinity and cell uptake rate of the liposomes and resulted in the restriction of the cancer cell proliferation, but it failed to improve the chemotherapeutic property of the Dox-liposome. The i.v. injection of antp-liposomes (15 mg Dox/kg) caused severe body weight loss and early death incidence due to probably increased toxicity. The antp targeting offered no advantage to the Dox-liposome in the delivery of Dox to the tumor, and failed to enhance the treatment efficiency of the liposomes.

Keywords: antp; charged peptide; positively charged; liposomal doxorubicin; cell

Journal Title: Biotechnology progress
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.