The ability of future engineering professionals to solve complex real‐world problems depends on their design education and training. Because engineers engage with open‐ended problems in which there are unknown parameters… Click to show full abstract
The ability of future engineering professionals to solve complex real‐world problems depends on their design education and training. Because engineers engage with open‐ended problems in which there are unknown parameters and multiple competing objectives, they engage in fuzzy decision‐making, a method of making decisions that takes into account inherent imprecisions and uncertainties in the real world. In the design‐based decision‐making field, few studies have applied fuzzy decision‐making models to actual decision‐making process data. Thus, in this study, we use datasets on student decision‐making processes to validate approximate fuzzy models of student decision‐making, which we call data‐enabled cognitive modeling. The results of this study (1) show that simulated design problems provide rich datasets that enable analysis of student design decision‐making and (2) validate models of student design cognition that can inform future design curricula and help educators understand how students think about design problems.
               
Click one of the above tabs to view related content.