LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Swimming training mitigates the sex-specific hepatic disruption caused by a high-calorie diet: The putative modulation of Nrf2/Keap-1 pathway in male mice.

Photo from wikipedia

This study investigated whether swimming protocol induces adaptations to sex-specific oxidative stress and Nrf2/Keap-1 pathway in the liver of mice fed a high-calorie diet (HCD) during the early life period.… Click to show full abstract

This study investigated whether swimming protocol induces adaptations to sex-specific oxidative stress and Nrf2/Keap-1 pathway in the liver of mice fed a high-calorie diet (HCD) during the early life period. Male and female Swiss mice were fed a standard or high-calorie (enriched with 20% lard and 20% corn syrup) diets, and the trained mice were subjected to a swimming protocol (5 days/week) from 21st to 49th postnatal days. Males fed a HCD had more pronounced alterations in all parameters evaluated than females. Although there was no increase in body weight, the fat deposition was higher in male mice exposed to diet. The intake of HCD induced dyslipidemia mainly in males. In a sex-dependent manner, the hepatic markers of oxidative damage, antioxidant defences, and a sensitive sulfhydryl protein were altered in mice fed a HCD. Swimming counteracted dyslipidemia, hepatic oxidative stress, and the Nrf2/Keap-1 signalling downregulation, in a sex-dependent manner, in mice exposed to a HCD. These findings demonstrate that a non-pharmacological therapy, swimming protocol, contributed to adaptations of sex-specific hepatic oxidative stress and Nrf2/Keap-1 regulation in male mice fed a HCD.

Keywords: sex specific; nrf2; male mice; high calorie; nrf2 keap

Journal Title: Cell biochemistry and function
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.