LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthetic Cancer‐Targeting Innate Immune Stimulators Give Insights into Avidity Effects

Photo from wikipedia

Multispecific and multivalent antibodies are seen as promising cancer therapeutics, and numerous antibody fragments and derivatives have been developed to exploit avidity effects that result in increased selectivity. Most of… Click to show full abstract

Multispecific and multivalent antibodies are seen as promising cancer therapeutics, and numerous antibody fragments and derivatives have been developed to exploit avidity effects that result in increased selectivity. Most of these multispecific and multivalent antibody strategies make use of recombinant expression of antigen‐binding modules. In contrast, chemical synthesis and chemoselective ligations can be used to generate a variety of molecules with different numbers and combinations of binding moieties in a modular and homogeneous fashion. In this study we synthesized a series of targeted immune system engagers (ISErs) by using solid‐phase peptide synthesis and chemoselective ligations. To explore avidity effects, we constructed molecules bearing different numbers and combinations of two “binder” peptides that target ephrin A2 and integrin α3 receptors and an “effector” peptide that binds to formyl peptide receptors and stimulates an immune response. We investigated various strategies for generating multivalent and multispecific targeted innate immune stimulators and studied their activities in terms of binding to cancer cells and stimulation of immune cells. This study gives insights into the influence that multivalency and receptor density have on avidity effects and is useful for the design of potential anticancer therapeutics.

Keywords: avidity; immune stimulators; cancer; innate immune; avidity effects

Journal Title: ChemBioChem
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.