LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Protein Chemical Synthesis Combined with Mirror‐Image Phage Display Yields d‐Peptide EGF Ligands that Block the EGF–EGFR Interaction

Photo from wikipedia

The epidermal growth factor (EGF) pathway, being overactive in a number of cancers, is a good target for clinical therapy. Although several drugs targeting the EGF receptor (EGFR) are on… Click to show full abstract

The epidermal growth factor (EGF) pathway, being overactive in a number of cancers, is a good target for clinical therapy. Although several drugs targeting the EGF receptor (EGFR) are on the market, tumours acquire resistance very rapidly. As an alternative, small molecules and peptides targeting EGF have been developed, although with moderate success. Herein, we report the use of mirror‐image phage display technology to discover protease‐resistant peptides with the capacity to inhibit the EGF–EGFR interaction. After the chemical synthesis of the enantiomeric protein d‐EGF, two phage‐display peptide libraries were used to select binding sequences. The d versions of these peptides bound to natural EGF, as confirmed by surface acoustic waves (SAWs). High‐field NMR spectroscopy showed that the best EGF binder, d‐PI_4, interacts preferentially with an EGF region that partially overlaps with the receptor binding interface. Importantly, we also show that d‐PI_4 efficiently disrupts the EGF–EGFR interaction. This methodology represents a straightforward approach to find new protease‐resistant peptides with potential applications in cancer therapy.

Keywords: egf egfr; egfr interaction; phage display

Journal Title: ChemBioChem
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.