LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Opportunities for Expanding Encoded Chemical Diversification and Improving Hit Enrichment in mRNA‐Displayed Peptide Libraries

Photo from wikipedia

DNA‐encoded small‐molecule libraries and mRNA displayed peptide libraries both use numerically large pools of oligonucleotide‐tagged molecules to identify potential hits for protein targets. They differ dramatically, however, in the ‘drug‐likeness’… Click to show full abstract

DNA‐encoded small‐molecule libraries and mRNA displayed peptide libraries both use numerically large pools of oligonucleotide‐tagged molecules to identify potential hits for protein targets. They differ dramatically, however, in the ‘drug‐likeness’ of the molecules that each can be used to discover. We give here an overview of the two techniques, comparing some advantages and disadvantages of each, and suggest areas where particularly mRNA display can benefit from adopting advances developed with DNA‐encoded small molecule libraries. We outline cases where chemical modification of the peptide library has already been used in mRNA display, and survey opportunities to expand this using examples from DNA‐encoded small molecule libraries. We also propose potential opportunities for encoding such reactions within the mRNA/cDNA tag of an mRNA‐displayed peptide library to allow a more diversity‐oriented approach to library modification. Finally, we outline alternate approaches for enriching target‐binding hits from a pooled and tagged library, and close by detailing several examples of how an adjusted mRNA‐display based approach could be used to discover new ‘drug‐like’ modified small peptides.

Keywords: encoded small; mrna displayed; displayed peptide; dna encoded; peptide libraries

Journal Title: Chembiochem
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.