LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chemical Synthesis of the Fluorescent, Cyclic Dinucleotides cthGAMP

Photo by scentspiracy from unsplash

The cGAS‐STING pathway is known for its role in sensing cytosolic DNA introduced by a viral infection, bacterial invasion or tumorigenesis. Free DNA is recognized by the cyclic GMP‐AMP synthase… Click to show full abstract

The cGAS‐STING pathway is known for its role in sensing cytosolic DNA introduced by a viral infection, bacterial invasion or tumorigenesis. Free DNA is recognized by the cyclic GMP‐AMP synthase (cGAS) catalyzing the production of 2’,3’‐cyclic guanosine monophosphate‐adenosine monophosphate (2’,3’‐cGAMP) in mammals. This cyclic dinucleotide acts as a second messenger, activating the stimulator of interferon genes (STING) that finally triggers the transcription of interferon genes and inflammatory cytokines. Due to the therapeutic potential of this pathway, both the production and the detection of cGAMP via fluorescent moieties for assay development is of great importance. Here, we introduce the paralleled synthetic access to the intrinsically fluorescent, cyclic dinucleotides 2’3’‐cthGAMP and 3’3’‐cthGAMP based on phosphoramidite and phosphate chemistry, adaptable for large scale synthesis. We examine their binding properties to murine and human STING and confirm biological activity including interferon induction by 2’3’‐cthGAMP in THP‐1 monocytes. Two‐photon imaging revealed successful cellular uptake of 2’3’‐cthGAMP in THP‐1 cells.

Keywords: cyclic dinucleotides; dinucleotides cthgamp; chemical synthesis; fluorescent cyclic; synthesis fluorescent

Journal Title: Chembiochem
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.