LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anticancer Water‐Soluble Organoruthenium Complexes: Synthesis and Preclinical Evaluation

Photo by nci from unsplash

The synthesis, characterisation, and evaluation of the in vitro cytotoxicity of five maleonitriledithiolate‐based ruthenium metal complexes bearing various phosphine ligands towards two ovarian cancer cell lines (A2780 and A2780cisR), one non‐small‐cell… Click to show full abstract

The synthesis, characterisation, and evaluation of the in vitro cytotoxicity of five maleonitriledithiolate‐based ruthenium metal complexes bearing various phosphine ligands towards two ovarian cancer cell lines (A2780 and A2780cisR), one non‐small‐cell lung cancer cell line (H460) and one normal prostate cell line (PNT2) are presented herein. These 18‐electron complexes were designed with four water‐soluble phosphine ligands to increase the water‐solubility character of the corresponding electron‐deficient ruthenium complex which showed great in vitro promises, and triphenylphosphine for comparison. The complexes with triphenylphosphine‐3,3′,3′′‐trisulfonic acid and triphenylphosphine present similar cytotoxicity compared to the 16‐electron precursor, with equal cytotoxicity to both A2780 and A2780cisR. Hints at the mechanism of action suggest an apoptotic pathway based on reactive oxygen species (ROS) production. No toxicity was observed in preliminary in vivo pilot studies for these two complexes in subcutaneous A2780 and A2780cisR xenograft models, with some evidence of tumour growth delay.

Keywords: evaluation; cell; a2780 a2780cisr; water; anticancer water; water soluble

Journal Title: Chembiochem
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.