LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthetic α‐Helical Peptides as Potential Inhibitors of the ACE2 SARS‐CoV‐2 Interaction

Photo from wikipedia

During viral cell entry, the spike protein of SARS‐CoV‐2 binds to the α1‐helix motif of human angiotensin‐converting enzyme 2 (ACE2). Thus, alpha‐helical peptides mimicking this motif may serve as inhibitors of… Click to show full abstract

During viral cell entry, the spike protein of SARS‐CoV‐2 binds to the α1‐helix motif of human angiotensin‐converting enzyme 2 (ACE2). Thus, alpha‐helical peptides mimicking this motif may serve as inhibitors of viral cell entry. For this purpose, we employed the rigidified diproline‐derived module ProM‐5 to induce α‐helicity in short peptide sequences inspired by the ACE2 α1‐helix. Starting with Ac‐QAKTFLDKFNHEAEDLFYQ‐NH2 as a relevant section of α1, a series of peptides, N‐capped with either Ac‐βHAsp‐[ProM‐5] or Ac‐βHAsp‐PP, were prepared and their α‐helicities were investigated. While ProM‐5 clearly showed a pronounced effect, an even increased degree of helicity (up to 63 %) was observed in sequences in which non‐binding amino acids were replaced by alanine. The binding affinities of the peptides towards the spike protein, as determined by means of microscale thermophoresis (MST), revealed only a subtle influence of the α‐helical content and, noteworthy, led to the identification of an Ac‐βHAsp‐PP‐capped peptide displaying a very strong binding affinity (KD=62 nM).

Keywords: peptides potential; potential inhibitors; helical peptides; synthetic helical; inhibitors ace2; sars cov

Journal Title: Chembiochem
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.