LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enzymatic Generation of Double‐Modified AdoMet Analogues and Their Application in Cascade Reactions with Different Methyltransferases

Photo by karsten116 from unsplash

Methyltransferases (MTases) have become an important tool for site‐specific alkylation and biomolecular labelling. In biocatalytic cascades with methionine adenosyltransferases (MATs), transfer of functional moieties has been realized starting from methionine… Click to show full abstract

Methyltransferases (MTases) have become an important tool for site‐specific alkylation and biomolecular labelling. In biocatalytic cascades with methionine adenosyltransferases (MATs), transfer of functional moieties has been realized starting from methionine analogues and ATP. However, the widespread use of S‐adenosyl‐l‐methionine (AdoMet) and the abundance of MTases accepting sulfonium centre modifications limit selective modification in mixtures. AdoMet analogues with additional modifications at the nucleoside moiety bear potential for acceptance by specific MTases. Here, we explored the generation of double‐modified AdoMets by an engineered Methanocaldococcus jannaschii MAT (PC‐MjMAT), using 19 ATP analogues in combination with two methionine analogues. This substrate screening was extended to cascade reactions and to MTase competition assays. Our results show that MTase targeting selectivity can be improved by using bulky substituents at the N6 of adenine. The facile access to >10 new AdoMet analogues provides the groundwork for developing MAT‐MTase cascades for orthogonal biomolecular labelling.

Keywords: generation double; adomet analogues; cascade reactions; double modified; enzymatic generation

Journal Title: Chembiochem
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.