LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

p‐Chloropropynyl Phenylalanine, a Versatile Non‐Canonical Amino Acid for Co‐Translational Peptide Macrocyclization and Side Chain Diversification

Photo by sharonmccutcheon from unsplash

Macrocyclization has proven to be a beneficial strategy to improve upon some of the disadvantages of peptides as therapeutics. Nevertheless, many peptide cyclization strategies are not compatible with in vitro display… Click to show full abstract

Macrocyclization has proven to be a beneficial strategy to improve upon some of the disadvantages of peptides as therapeutics. Nevertheless, many peptide cyclization strategies are not compatible with in vitro display technologies like mRNA display. Here we describe the novel amino acid p‐chloropropynyl phenylalanine (pCPF). pCPF is a substrate for a mutant phenylalanyl‐tRNA synthetase and its introduction into peptides via in vitro translation leads to spontaneous peptide macrocyclization in the presence of peptides containing cysteine. Macrocyclization occurs efficiently with a wide variety of ring sizes. Moreover, pCPF can be reacted with thiols after charging onto tRNA, enabling the testing of diverse ncAAs in translation. The versatility of pCPF should facilitate downstream studies of translation and enable the creation of novel macrocyclic peptide libraries.

Keywords: chloropropynyl phenylalanine; macrocyclization; amino acid; peptide macrocyclization

Journal Title: ChemBioChem
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.