LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ormeloxifene, a nonsteroidal antifertility drug promotes megakaryocyte differentiation in leukemia cell line K562.

Photo by rgaleriacom from unsplash

Ormeloxifene (ORM) (3,4-trans-2,2-dimethyl-3-phenyl-4-p-(β-pyrrolidinoethoxy) phenyl-7-methoxychroman), world's first nonsteroidal selective estrogen receptor modulator approved for contraception in India has been shown to have potential anticancer activities. Here, we show that ORM can induce megakaryocyte… Click to show full abstract

Ormeloxifene (ORM) (3,4-trans-2,2-dimethyl-3-phenyl-4-p-(β-pyrrolidinoethoxy) phenyl-7-methoxychroman), world's first nonsteroidal selective estrogen receptor modulator approved for contraception in India has been shown to have potential anticancer activities. Here, we show that ORM can induce megakaryocyte and myeloid (granulocytic) but not erythroid differentiation in multipotent human myeloid leukemia cell line K562. We show that ORM at an IC50 of 7.5 µM can induce morphological changes similar to megakaryocytes in K562 cells. ORM led to increase in levels of megakaryocytic differentiation markers (CD41 and CD61) as well as key transcription factors GATA1 and AML1. We further show that ORM induces megakaryocytic differentiation in K562 cells through ERK activation and induction of autophagy in a fashion similar to other known inducers of megakaryocytic differentiation such as phorbol esters. In addition, as shown earlier, we yet again observed that ORM led to activation of caspases since their inhibition through pan-caspase inhibitor mitigated megakaryocytic differentiation as they led to significant decrease in CD41 and CD61. Because induction of megakaryocytic differentiation in K562 involves growth arrest and exit from cell cycle, we also observed an increase in levels of p21 and p27 with decrease in c-Myc protein levels in K562 cells treated with 7.5 µM ORM for 24 and 48 h, respectively. Taken together, these findings indicate that ORM can markedly induce megakaryocytic differentiation in K562 cells.

Keywords: leukemia cell; megakaryocytic differentiation; cell line; orm; differentiation

Journal Title: Cell biology international
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.