LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Mesoporous Cobalt Aluminate Spinel Catalyst for Nonoxidative Propane Dehydrogenation

Photo by _willpic from unsplash

A mesoporous CoAl2O4 spinel (Co‐Al) is synthesized by a one‐step evaporation‐induced self‐assembly (EISA) method. N2 physisorption and TEM are used to demonstrate the presence of mesopores within the Co‐Al material.… Click to show full abstract

A mesoporous CoAl2O4 spinel (Co‐Al) is synthesized by a one‐step evaporation‐induced self‐assembly (EISA) method. N2 physisorption and TEM are used to demonstrate the presence of mesopores within the Co‐Al material. The spinel crystal structure of Co‐Al, in which Co occupies tetrahedral (Td) sites, is confirmed by using XRD and UV/Vis spectroscopy. In nonoxidative propane dehydrogenation at 550 °C, a propane conversion of approximately 8 % is observed for Co‐Al with a >80 % propylene selectivity, which corresponds to a turnover frequency of 5.1 h−1 based on an estimation of the number of active Co sites by using NH3 temperature‐programmed desorption. A much higher propane conversion rate and a circa 80 % propylene selectivity is observed upon reaction at 600 °C. Continuous deactivation of the catalyst is observed for Co‐Al at this elevated temperature. In situ X‐ray absorption spectroscopy results suggest that Co remains as a Td Co2+ species under the reaction conditions. The Td Co2+ sites within the Co‐Al material are thus proposed to act as Lewis acidic active sites; this acidity is verified using IR spectroscopy with pyridine as a probe molecule.

Keywords: mesoporous cobalt; nonoxidative propane; propane dehydrogenation; propane; spectroscopy

Journal Title: ChemCatChem
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.