LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Catalytic Properties of Carbon supported Zirconia and Sulfated Zirconia for the Green Synthesis of Benzodiazepines

Photo from wikipedia

This work reports for the first time a new series of promising porous catalytic carbon materials, functionalized with Lewis and Brønsted acid sites useful in the green synthesis of 2,3‐dihydro‐1H‐1,5‐benzodiazepine… Click to show full abstract

This work reports for the first time a new series of promising porous catalytic carbon materials, functionalized with Lewis and Brønsted acid sites useful in the green synthesis of 2,3‐dihydro‐1H‐1,5‐benzodiazepine – nitrogen heterocyclic compounds. Benzodiazepines and derivatives are fine chemicals exhibiting interesting therapeutic properties. Carbon materials have been barely investigated in the synthesis of this type of compounds. Two commercial carbon materials were selected exhibiting different textural properties: i) Norit RX3 (N) as microporous sample and ii) mesoporous xerogel (X), both used as supports of ZrO2 (Zr) and ZrO2/SO42− (SZr). The supported SZr led to higher conversion values and selectivities to the target benzodiazepine. Both chemical and textural properties influenced significantly the catalytic performance. Particularly relevant are the results concerning the non‐sulfated samples, NZr and XZr, that were able to catalyze the reaction leading to the target benzodiazepine with high selectivity (up to 80 %; 2 h). These results indicated an important role of the carbon own surface functional groups, avoiding the use of H2SO4. Even very low amounts of SZr supported on carbon reveal high activity and selectivity. Therefore, the carbon materials herein reported can be considered an efficient and sustainable alternative bifunctional catalysts for the benzodiazepine synthesis.

Keywords: green synthesis; carbon materials; properties carbon; zirconia; synthesis

Journal Title: ChemCatChem
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.