LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Defect‐Engineered Ruthenium MOFs as Versatile Heterogeneous Hydrogenation Catalysts

Photo from wikipedia

Ruthenium MOF [Ru3(BTC)2Yy] ⋅ Gg (BTC=benzene‐1,3,5‐tricarboxylate; Y=counter ions=Cl−, OH−, OAc−; G=guest molecules=HOAc, H2O) is modified via a mixed‐linker approach, using mixtures of BTC and pyridine‐3,5‐dicarboxylate (PYDC) linkers, triggering structural defects at the… Click to show full abstract

Ruthenium MOF [Ru3(BTC)2Yy] ⋅ Gg (BTC=benzene‐1,3,5‐tricarboxylate; Y=counter ions=Cl−, OH−, OAc−; G=guest molecules=HOAc, H2O) is modified via a mixed‐linker approach, using mixtures of BTC and pyridine‐3,5‐dicarboxylate (PYDC) linkers, triggering structural defects at the distinct Ru2 paddlewheel (PW) nodes. This defect‐engineering leads to enhanced catalytic properties due to the formation of partially reduced Ru2‐nodes. Application of a hydrogen pre‐treatment protocol to the Ru−MOFs, leads to a further boost in catalytic activity. We study the benefits of (1) defect engineering and (2) hydrogen pre‐treatment on the catalytic activity of Ru−MOFs in the Meerwein‐Ponndorf‐Verley reaction and the isomerization of allylic alcohols to saturated ketones. Simple solvent washing could not avoid catalyst deactivation during recycling for the latter reaction, while hydrogen treatment prior to each catalytic run proved to facilitate materials recyclability with constant activity over five runs.

Keywords: ruthenium; mofs versatile; engineered ruthenium; defect engineered; mofs; ruthenium mofs

Journal Title: ChemCatChem
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.