The effect of the axial temperature profile upstream and downstream of catalyst bed on the performance of non‐oxidative‐coupling‐of‐methane (NOCM) over Fe/SiO2 was determined. A three‐zone oven was used with independent… Click to show full abstract
The effect of the axial temperature profile upstream and downstream of catalyst bed on the performance of non‐oxidative‐coupling‐of‐methane (NOCM) over Fe/SiO2 was determined. A three‐zone oven was used with independent temperature control of the catalyst‐zone as well as the zones upstream and downstream. It was found that catalytic initiation followed by residence time at 1000 °C downstream the catalyst bed increases CH4 conversion by a factor of 8, while decreasing carbonaceous deposit selectivity from 40 to 12 C%. Residence time at 1000 °C upstream of the catalyst bed causes deposit formation on the catalyst without significantly influencing methane conversion. A shallow catalyst bed followed by significant residence time at high temperature maximizes methane conversion and minimizes coking. This work shows that axial temperature profile and residence time upstream and downstream of the catalyst bed strongly influence the performance in catalytic NOCM.
               
Click one of the above tabs to view related content.