LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrogenation of CO2 to Methanol with Mn‐PNP‐Pincer Complexes in the Presence of Lewis Acids: the Formate Resting State Unleashed

Photo from wikipedia

The hydrogenation of CO2 to methanol was achieved using a catalytic system comprising metal complexes of the form [Mn(CO)2[N(C2H4PR2)] (R=iPr/Ph, [HN(C2H4PPh2)2]=MACHO−Ph) together with Lewis acid additives. Mechanistic studies suggest initial… Click to show full abstract

The hydrogenation of CO2 to methanol was achieved using a catalytic system comprising metal complexes of the form [Mn(CO)2[N(C2H4PR2)] (R=iPr/Ph, [HN(C2H4PPh2)2]=MACHO−Ph) together with Lewis acid additives. Mechanistic studies suggest initial CO2 insertion into a Mn−H bond leads to a formate complex as resting state. By systematically balancing the interaction between the acidic additive and the catalyst, the formate ligand could be removed through esterification to unleash the full catalytic potential. The reaction conditions were optimized on basis of the partial reaction order of relevant compounds. The combination of MACHO−Ph and Ti(OiPr)4 was identified as the most active system with a TON of 160 (p(CO2)=5 bar, p(H2)=160 bar, T=150 °C). Using methanol as solvent and co‐reagent allows the catalytic conversion of CO2/H2 in a liquid phase process comprising only the substrates and products.

Keywords: co2; resting state; hydrogenation co2; co2 methanol

Journal Title: ChemCatChem
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.