LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Covalent Organic Framework: An Emerging Catalyst for Renewable Ammonia Production

Photo from wikipedia

Ammonia (NH3), a fertilizer feedstock and clean energy carrier, is produced primarily by the Haber‐Bosch method, which is environmentally hazardous and energy intensive. Therefore, there is an immediate need for… Click to show full abstract

Ammonia (NH3), a fertilizer feedstock and clean energy carrier, is produced primarily by the Haber‐Bosch method, which is environmentally hazardous and energy intensive. Therefore, there is an immediate need for a benign alternative, like catalytic nitrogen fixation, such as catalytic nitrogen reduction reaction (NRR). NRR must involve active, selective, scalable, and long‐lived catalysts to become a sustainable source of ammonia production. Recently, covalent organic frameworks (COFs) and COF‐based functional materials have been proposed as promising catalysts for NRR. COFs comprise repeating units of organic molecules connected by strong covalent bonds. By fine‐tuning the building blocks, various COFs can be designed with numerous active sites. This class of materials offers excellent modularity, porosity, stability, and low density. A novel type of nitrogen‐abundant COFs called covalent triazine framework (CTF) has been noted for its high electron density and ultra‐stability. This review examines the state‐of‐the‐art for the NRR using different COF‐based catalysts and discusses design principles for advancing it. The underlying mechanism of NRR with different strategies adopted for renewable ammonia production is also discussed for a clear understanding of the process. Furthermore, key parameters for improving ammonia synthesis‘s photo/electrocatalytic efficiency will also be highlighted to present new possibilities to this emerging field.

Keywords: ammonia; renewable ammonia; covalent organic; ammonia production

Journal Title: ChemCatChem
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.