LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Understanding the importance of process alarms based on the analysis of deep recurrent neural networks trained for fault isolation

Photo by dawson2406 from unsplash

The identification of process faults is a complex and challenging task due to the high amount of alarms and warnings of control systems. To extract information about the relationships between… Click to show full abstract

The identification of process faults is a complex and challenging task due to the high amount of alarms and warnings of control systems. To extract information about the relationships between these discrete events, we utilise multitemporal sequences of alarm and warning signals as inputs of a recurrent neural network–based classifier and visualise the network by principal component analysis. The similarity of the events and their applicability in fault isolation can be evaluated based on the linear embedding layer of the network, which maps the input signals into a continuous‐valued vector space. The method is demonstrated in a simulated vinyl acetate production technology. The results illustrate that with the application of recurrent neural network–based sequence learning not only accurate fault classification solutions can be developed, but the visualisation of the model can give useful hints for hazard analysis.

Keywords: network; fault isolation; analysis; process; recurrent neural

Journal Title: Journal of Chemometrics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.