LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Properly handling negative values in the calculation of binding constants by physicochemical modeling of spectroscopic titration data

Photo by campaign_creators from unsplash

To implement equilibrium hard‐modeling of spectroscopic titration data, the analyst must make a variety of crucial data processing choices that address negative absorbance and molar absorptivity values. The efficacy of… Click to show full abstract

To implement equilibrium hard‐modeling of spectroscopic titration data, the analyst must make a variety of crucial data processing choices that address negative absorbance and molar absorptivity values. The efficacy of three such methodological options is evaluated via high‐throughput Monte Carlo simulations, root‐mean‐square error surface mapping, and two mathematical theorems. Accuracy of the calculated binding constant values constitutes the key figure of merit used to compare different data analysis approaches. First, using singular value decomposition to filter the raw absorbance data prior to modeling often reduces the number of negative values involved but has little effect on the calculated binding constant despite its ability to address spectrometer noise. Second, both truncation of negative molar absorptivity values and the fast nonnegative least squares algorithms are superior to unconstrained regression because they avoid local minima; however, they introduce bias into the calculated binding constants in the presence of negative baseline offsets. Finally, we establish two theorems showing that negative values are best addressed when all the chemical solutions leading to the raw absorbance data are the result of mixing exactly two distinct stock solutions. This allows the raw absorbance data to be shifted up, eliminating negative baseline offsets, without affecting the concentration matrix, residual matrix, or calculated binding constants. Otherwise, the data cannot be safely upshifted. A comprehensive protocol for analyzing experimental absorbance datasets with is included.

Keywords: titration data; negative values; spectroscopic titration; absorbance; modeling spectroscopic; binding constants

Journal Title: Journal of Chemometrics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.