LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Homochiral bifunctional L-prolinamide- and L-bis-prolinamide-catalyzed asymmetric aldol reactions performed in wet solvent-free conditions.

Photo by sxy_selia from unsplash

In this study, the novel bifunctional homochiral thiourea-L-prolinamides 1-4, tertiary amino-L-prolinamide 5, and bis-L-prolinamides 6 and 7 were prepared from enantiomerically pure (11R,12R)-11,12-diamino-9,10-dihydro-9,10-ethanoanthracene 8 and (11S,12S)-11,12-diamino-9,10-dihydro-9,10-ethanoanthracene ent-8. Highly enantioselective and… Click to show full abstract

In this study, the novel bifunctional homochiral thiourea-L-prolinamides 1-4, tertiary amino-L-prolinamide 5, and bis-L-prolinamides 6 and 7 were prepared from enantiomerically pure (11R,12R)-11,12-diamino-9,10-dihydro-9,10-ethanoanthracene 8 and (11S,12S)-11,12-diamino-9,10-dihydro-9,10-ethanoanthracene ent-8. Highly enantioselective and diastereoselective aldolic intermolecular reactions (up to 95% enantiomeric excess, 93:7 anti/syn) between aliphatic ketones (20 equiv) and a range of aromatic aldehydes (1 equiv) were successfully carried out in the presence of water (10 equiv) and monochloroacetic acid (10 mol%), solvent-free conditions, at room temperature over 24 h using organocatalysts 1-7 (5 mol%). Stereoselective induction using density functional theory-based methods was consistent with the experimental data.

Keywords: free conditions; solvent free; homochiral bifunctional; prolinamide bis

Journal Title: Chirality
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.