LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis, characterization and absolute configurations of methyl ladderanoates.

Photo by scottwebb from unsplash

Methyl esters of [5]-ladderanoic acid and [3]-ladderanoic acid were prepared by esterification of the acids isolated from biomass at a wastewater treatment plant. Optical rotations at six different wavelengths (633,… Click to show full abstract

Methyl esters of [5]-ladderanoic acid and [3]-ladderanoic acid were prepared by esterification of the acids isolated from biomass at a wastewater treatment plant. Optical rotations at six different wavelengths (633, 589, 546, 436, 405 and 365 nm) and vibrational circular dichroism (VCD) spectra in the 1800-900 cm-1 region were measured in CDCl3 solvent and compared with quantum chemical (QC) predictions using B3LYP functional and 6-311++G(2d,2p) basis set with polarizing continuum model representing the solvent. QC predictions gave negative optical rotations at all six wavelengths for (R)-methyl [5]-ladderanoate and positive optical rotations for (R)-methyl [3]-ladderanoate, the same signs as previously reported for the corresponding acids. The crystal structure of (-)-methyl [5]-ladderanoate independently confirmed (R) configuration. The QC-predicted VCD spectra using Boltzmann population weighted spectra of individual conformers did not provide satisfactory quantitative agreement with the experimental VCD spectra. An improved quantitative agreement for VCD spectra could be obtained when conformer populations were optimized to maximize the similarity between experimental and predicted VCD spectra, but more improvements in VCD predictions are needed.

Keywords: absolute configurations; methyl ladderanoate; characterization absolute; optical rotations; synthesis characterization; vcd spectra

Journal Title: Chirality
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.