Several nuclear and nucleic acid‐binding proteins were detected in the proteomic analyses of ciliary fractions from various organisms. Yet very little is known about the role of these proteins in… Click to show full abstract
Several nuclear and nucleic acid‐binding proteins were detected in the proteomic analyses of ciliary fractions from various organisms. Yet very little is known about the role of these proteins in ciliogenesis and ciliary signaling. In an attempt to characterize the role of these nuclear proteins, we identified a hypothetical protein from Chlamydomonas reinhardtii, CrRuvBL1, which is homologous to human DNA helicase, HsRuvBL1. CrRuvBL1 localizes to flagella and nucleus in vegetative Chlamydomonas cells. It accumulates in the nucleus specifically during initial stages of flagellar assembly and cell division indicating its role in these processes. Mammalian counterpart of this protein, HsRuvBL1, was found to be present at the basal bodies and in the primary cilium of quiescent Retinal Pigment Epithelial (RPE1) cells. In interphase cells, HsRuvBL1 is present at centrioles while the protein localizes on spindle fibers, spindle poles and midbodies, which are important structures formed during different phases of cell division. Depletion of HsRuvBL1 by using siRNAs leads to complete loss of primary cilia in RPE1 cells. Together these results suggest that nuclear proteins play an important role in ciliogenesis.
               
Click one of the above tabs to view related content.